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This paper is concerned with the problem of uniqueness in linear semi-infinite
optimization. General characterization theorems are given for problems with
continuous and differentiable functions. The relationship between linear semi
infinite optimization and one-sided L I -approximation is also used in order to
derive certain characterizations. ( 1991 Academic Pre". Inc.

INTRODUCTION

This paper is concerned with linear semi-infinite optimization. Let us
first introduce the problem.

Let K be a compact subset of \R d
, d~ 1, such that int(K) = K and let us

denote by C(K) the set of continuous functions defined on K. Suppose that
uf are functions in C(K) for i= 1, ..., nand j= 1, ..., m. Moreover, let
.f; E C(K), J= I, ..., m, and p = (PI> ... , Pn) E IR fI

\ {O}. Then we consider the
following problem.

PROBLEM I. Minimize p(a) = L:;'~, aiPi' a = (a" ..., an)' in IW', subject to
the constraints

fI

L aiu:(x)~fj(x),
i= I

XEK, J= I, ... , m.

This is a standard problem in linear semi-infinite optimization (e.g., see
[1, 2]). Many results are given concerning existence and characterization
of this problem.

Let p, {uf}, and {fj} be arbitrarily given but fixed in this problem. Then
characterizations of uniqueness are known. However, a solution a* of the
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problem is used in these characterizations. In this paper we shall be concer
ned with developing a general theory of uniqueness in linear semi-infinite
optimization. In this sense our paper is closer in spirit to the Haar theory
in linear Chebyshev approximation. Our goal is to provide conditions
ensuring uniqueness of the solutions of Problem I which only use
properties of the functions {un and are independent of the functions {Ii}'

This problem has only been considered for the case in which m = I and
the functions in the problem are continuous. In this case there is no
uniqueness in general (see [7]). But the situation is radically altered if
m > I or if we restrict ourselves in special cases to differentiable functions.

We give a complete characterization of uniqueness of the solutions in
Problem I for given p and {un and all choices of functions {!J} satisfying
the so-called Slater condition. It turns out that requiring uniqueness for all
continuous functions is too restrictive in many cases. Therefore we also
consider the case of smooth functions where we obtain meaningful results.
In the case m = 1 we extend our problem as follows. Suppose that P is the
set of vectors p for which the solution set of Problem I is nonempty and
bounded for given {un and some functions {Ii}' We develop conditions
ensuring uniqueness of solutions in Problem I for all pEP and all functions
II; i.e., only the functions {u,'} are fixed. These investigations have been
inspired by similar considerations in one-sided L I-approximation. It is well
known that there is a close relationship between one-sided LI-approxima
tion and linear semi-infinite optimization. We use many results which have
recently been given in one-sided L I-approximation (for a survey see [8])
in order to obtain uniqueness results in semi-infinite optimization. In par
ticular, it can be shown that in the case in which {uJ }7~ I and II are
differentiable functions we obtain many important examples of uniqueness.
But we are not able to extend these characterizations to the case m> 1. We
show by the example of linear Chebyshev approximation with constraints
that the situation is very complicated for m > 1.

The paper is organized as follows. In Section 1 we first state some results
concerning existence and characterization of the solutions of Problem I.
Then a genera] characterization of uniqueness of solutions for all
continuous (differentiable) functions is shown. In Section 2 the case m = 1
is studied in more detail. We also give estimates for the dimension of the
solution set if the solution is not unique.

1. A GENERAL CHARACTERIZATION THEOREM OF UNIQUENESS

In this section we first state some results concerning existence and
characterization of solutions. The following condition is of importance in
this context.
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Let {uj}7~1 ;'~, and {./j}j'~, in C(K) be arbitrarily given but fixed
functions in Problem I. Then the problem is said to satisfy the Slater
condition if there is a vector a = (a I' ... , a,,) in IR" satisfying

L aiu/(x) <J;(x),
i= J

xEK, j= I, ... , m.

We first consider the problem of existence of solutions. For this reason we
need the following notation.

DEFINITION 1.1. Let the functions {u;, ..., u{,}, j= I, ... , m, in C(K) be
given. Then we denote by P the set of all vectors p = (PI, ... , Pn) E \R"\ {o}
such that if L:;'~ I bju/(x) ~ 0 for all x E K, j = I, ... , m (where
b=(b" ... ,b,,)ElRn\{o}), thenp(b)=L;'~, bjpj>O.

The following is true.

THEOREM 1.2. Let Problem I be given for some p E IR" \ {O} and suppose
that there is an a = (a" ... , a,,) satisfying L:7= I aju/ (x) ~./j(x), j = I, ..., m.
Then pEP if and only !f the solution set of Problem I is nonempty and
bounded.

This theorem follows from a result in [2, p. 71].
In particular, we shall be interested in problems which have a unique

solution. Theorem 1.2 shows that we can restrict ourselves to problems
satisfying pEP.

We shall also state the weli-known Kuhn~Tucker theorem characterizing
solutions of Problem I (see [1,2]).

We set for every fEC(K)

ZCf)= {x :f(x)=O}.

THEOREM 1.3. Let Problem I satisjving the Slater condition be given.
Then a* = (af, ..., a:) is a solution if and only if there exist nonnegative
. t .'th "m .-.- . t { j}" Z(f. *) * - "" * jmegersrjlH L.j~lrj""n,poms X k k~IC .I-Vj ,vj -L.j=lajU j,
and positive numbers pn ~ ~ ,for all j = I, ..., m, such that

i= I, ..., n.

The following result concerning uniqueness is well known (see [2,
p.49]):

Let Problem I satisfying the Slater condition be gIven. Then a * =
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(a f , ..., a:) is a (strongly) unique solution if and only if there does not exist
abE (b" ..., bn ) E IR n

\ {O} satisfying p(b) ~ 0 and

L b;u:(x)~O
i= I

forall XEZ(fj-;tl ai*u:),j=I, ...,m.

In this characterization it is necessary to determine the zeros of the
functions~ - L7~ I a;* ui; i.e., the solution a* is used in this characterization.

Our main purpose is to give conditions which only use properties of the
functions {un and therefore are independent of the functions UJ.

To this end, we first show the following lemma (see also [8,9]).

LEMMA 104. Let the functions {u(, ..., u~} be in elK), j= I, ... , m, and
P = (PI' ..., Pn) E W\ {O} be given. Suppose that the (Aj);::01 are closed
subsets of K such that

implies that

n

L biui(x)~O,
i= J

n

xEAj,j=I, ... ,m

p(b)= I: biPi~O.
;= I

Then there exist non-negative integers rj I'.'ith L;::: I I'j ~ n, points {xL};: = 1 in
A j' and positive numbers pn;: ~ I for all j = I, ..., m, such that

Proof Let

m rJ

L L J.Lu!{x{) = -Pi'
j~ I k ~ 1

i= I, ..., n.

H = {(u({x), ..., u~(x)): x E AI' j= I, ... , m}

and let G denote the closed convex cone generated by H. By assumption
p ¥- O. If - pEG then the above representation of - p exists. Therefore we
assume that - p if: G. Since G and { - p} are closed subsets and G is a cone
there exists a separating hyperplane through the origin. Hence there is a
C = (c i , ... , cn) ¥- 0 such that

n

L C;qi~O< L (-C;Pi)
i= 1 i= 1

for all q = (ql' ..., qn) E G. Set hj = L7~ I Ciu:' j = I, ..., m. Then hj(x) ~ 0 for
all x E Aj' j = 1, ..., m, and p(c) < O. This is a contradiction and hence
-pEG. I
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As we have already mentioned we will obtain unicity of the solutions of
Problem I for many classes of differentiable functions. Therefore we give a
characterization of uniqueness including also differentiable functions.

In this case we must restrict ourselves to a more special subset K. We
assume that K is a compact convex subset of [Rd, d ~ I, with piecewise
smooth boundary. Let C'(K) be the set of continuously differentiable
functions in C(K).

Then let Z I (f) denote the set of zeros of K for which the following hold:

(1) If x E int(K), then all first partial derivatives of f at x vanish
(i.e., the gradient off at x is zero).

(2) If x E oK, then all directional derivatives to I at x vanish for all
directions tangent to K at x.

THEOREM 1.5. Let Problem I, n ~ 2, be given and assume that pEP. Let
K be a compact convex subset of [Rd with piecewise smooth boundary.
Suppose that {ut, ..., u;,} are in C(K) for j= I, ..., m" O~m, ~m, and in
C I (K) for j = m, + 1, ... , m. Then Problem J has a unique solution for all f
in C(K), j = I, ..., m" and/; in C1(K), j = m, + I, ... , m, satisfying the Slater
condition if and only ilfor all a = (a" ..., all) E [RII \ {O}, v, = L:;'~ I aiU:, there
exists a b=(b" ...,bl)E[R"\{O}, wj=L:;'=, biu:, such that

(a) Wj(x)~Oforall XEZ(V,), j= 1, ... , mt;

(b) Wj(x)~OforallxEZ,(v), j=m l +l, ... ,m;

(c) p(b)=L:;'~, biPi<O.

Proof Assume that (a)~(c) hold and that there exist two solutions
a' and a 2

, a'#a 2
• Set a*=(a l -a2 )/2, Sj=L;'~latu:, and hj=fj

L:;'~, (aJ + a7) uil2, j= I, ... , m. Then

X E K, j = I, ..., m.

We consider Problem I'; Minimize

II
p(a)=L aiPi

j= I

subject to the constraints

I aiu{(x) ~ hj(x),
i= I

XEK, j= I, ..., m.

It follows that 0 and a * are solutions of Problem 1'. Since hj E C(K),
j = I, ..., m" and hiE C I(K), j = m l + 1, ... , m, we obtain that Z(hi) c Z(Sj)'
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j= I, ..., m l , and Z(hj ) = ZI(h j ) c ZI(Sj), j= m l + 1, ..., m. By assumption,
there exists abE IRn\{o} such that the functions I-t'j = L:;'~I h;u{,
j = I, ..., m, satisfy

Wj(X) ~ 0,

wj(x) ~ 0,

p(b)<O.

XEZ(Sj)' j= I, ... , m l

XEZ1(Sj), j=ml+I, ...,m,

Since Problem I satisfies the Slater condition there exists an a= (a I' ... , an)
such that

n

L aju{(x) <.0(x),
j~ I

XE K, j= I, ... , m.

Hence tj(X)=L:;'~l cju{(x) satisfies tj(x)<O, xEZ(h), j= I, ..., m, where
c;=aj-(a: +a;)/2. Let C=(cl' ..., cn ). Therefore we have for a sufficiently
small e > 0 that

p(b + ec) < 0,

wj(x) + etj(x) < hJ(x)

and for sufficiently small b > 0

p(b(b + ec)) < 0

b(wj(x) + etj(x)) ~ hj(x)

forall xEZ(hj ), j=l, ... ,m,

for all XE K, j= 1, ..., m.

Therefore °is not a solution to Problem I', and this is a contradiction.
To prove the converse we assume that (a)~(c) do not hold. Hence there

is a vector a*= (ar, ...,a:)E 1R/\{O} such that for all b=(b l , ...,bll )E
IR" \ {O}, where thefunctions vj = L:;'= I a j*uf and wj = L:;J~ I h;u{, j = I, ..., m,
satisfy

Wj(X)~O,

wj(x) ~ 0,

XEZ(Vj ), j=I, ...,m l ,

XEZI(V), j=m l +l, ...,m,

we have that p(b) ~ O.
Then it follows from Lemma 1.4 that there exist points fxL} k'.~ I in Z(vj ),

j = 1, , m l , and in Z\(v), j = m\ + 1, ..., m, positive numbers {Ank'~ I'
i = 1, , m, and non-negative r j with L:;= I rj:S;; n satisfying

i= 1, ... , n.
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If we now assume that there exist functions {fJ~, In C(K) and

{.t~}7~"1]+' in C'(K) such that

f;(xO=O,

lit, a,*u:(x)! ~f~(x),

k = I, ..., r, and j = 1, ..., m

xEK, j=I, ... ,m

then +a * are solutions of Problem I for these functions {h} 7'. This is a
contradiction. It remains to show that functions {h} of the above form
exist. The construction is difficult but it follows in the same way as in
[8,9]. I

Remark. If in Theorem 1.5 we have m = m I' i.e., we only consider
continuous functions, then it is sufficient to assume that K is a compact set
in IR d satisfying int(K) = K.

From the proof of Theorem 1.5 we immediately obtain the following
characterization.

COROLLARY 1.6. Let the assumptions of Theorem 1.5 he given. Then
Prohlem I has a unique solution for all h in C(K), j = I, ..., m" and f; in
C'(K), j=m, + I, ..., m, satL~rying the Slater condition if and only if there
do not exist a vector a=(al, ... ,a,,)E[R"\{O}, V;=L;'~, a;uf, points
{Xnk'~IEZ(V;), j=l, ,m" {Xnk'~IEZI(V;), j=m,+l, ... ,m, positive
numhers pn k' ~ " j = 1, , m, and non-negative integers rJ with L7~, r; ~ n
satisfving

L f ).{u/(xO= -Pi'
j~' k ~,

i= I, ..., n.

2. UNIQUENESS IN THE CASE m = I

In this section we consider the special case of Problem I where m = I.
This problem is usually considered in linear semi-infinite optimization. We
state the problem in this simpler form once again.

PROBLEM II. Let K he a compact subset of [R", d~ I, int(K) = K, be
given. Let f be a function in C(K) and U = span {u I' ..., un}, n ~ 2, be an
n-dimensional subspace of C(K) which contains a strictly positive function.
Suppose that p = (PI> ... , p,,) E [R"\{O}. Minimize p(a) = L;'~, aiPi, a =
(a" ..., a,,), suhject to the constraints

L a;ui(x) ~f(x),
j= I

XE K.
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Note that P is the set of all vectors P=(PI, ... ,p,,)EIR"\{O} such
that L:7~, biui(x)~O, xEK, and b,iO implies p(b)=L:;'~1 b;p;>O. The
condition that U contains a strictly positive function is equivalent to the
condition that Problem II satisfies the Slater condition with respect to all
choices of f

Let C(K) be C(K) if .1'=0 and CI(K) if 05= 1. Moreover, let Z,U) be
Z(f) if 05=0 and Zdf) if 05= 1.

We first recall the unicity results of Section 1 for our special problem.

THEOREM 2.1. Let Problem II be given. Let pEP and suppose that 05 =°
or 05 = 1. If 05 = 1 we assume that K is a compact, convex set with a piecewise
smooth boundary. Let U be in C'(K). Then the following conditions are
equivalent:

(a) Problem II has a unique solution for all f E C( K).

(b) For all aEIR"\{O} there is a bEIR"\{O} such that

it, b;u;(x) ~° for all x E Z, Ctl a;ui}

p(b) < O.

(c) There do not exist a vector a = (aI' ... , a,,) E IR n
\ {O },points {x/};~ I

in Z,(L:7~, a;u;), and positive numbers P;};~I' r~n, satisfving

L )'jU;(x) = -Pi'
j=l

i= 1, ... , n.

Remark. If 05 = 0, i.e., only continuous functions are considered, this
theorem is due to Nurnberger [6, 7].

These conditions are often not easy to check. We obtain better results if
we use the relationship between semi-infinite optimization and one-sided
L I-approximation and apply well-known results of this theory.

The next result is due to Pinkus [11]. We prove it here for completeness.

PROPOSITION 2.2. Let Problem II be given. Then P = (PI' ... , p,,) E P (f
and only if there is aWE C(K), w(x) > 0, for all x E K, satisfying

Lu;(x) w(x) dx = -P" i= 1, ... , n.

Proof Assume that there does not exist such a \1' E C( K). Then

-p¢A={(Lu,W, ..., Lu"W):U;EC(K), i=I, ...,n, w>o}.
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A is a convex cone and hence there exists a b=(b" ...,bn)ElRn\{o}
satisfying

for all w> O. This implies that L,;'=, biuj(x) ~ 0 for all x E K. Hence p ¢ P.
For the converse let wEC(K), w>O, be such that fKUiW= -Pi'

i = I, ... , n. Assume that there exists a b -# 0 satisfying

n

L biui(X) ~ 0,
i~ I

L b,pj~O.
i= 1

XEK

Then - L,;'~ I b j Pi = fK(L,;'= I biu;) W~ O. On the other hand, it follows from
L7~ I biuj(x) ~ 0 for all x E K and L7~ I bju j -# 0 that SK(L7~ I bju j) W < O.
This contradiction completes the proof. I

We now obtain the following relationship between linear semi-infinite
optimization and one-sided L,-approximation.

PROPOSITION 2.3. Let Problem II be given and let p be in P. Then there
exists a function WE C(K), W> 0, such that Problem II is equivalent to the
followingprohlem:Determinea* = (af, ...,a:) E IRnsatisfyingL7=la!ui~f

such that

for all a E W satisfying L ajui~ f.
Proof Since pEP it follows from Proposition 2.2 that there exists a

wEC(K), 11'>0, such that JKUiW= -Pi' i=l, ... ,n. Hence a* satisfies
L,;'~, a j Pi ~ L,;'=, ai* Pi for all a satisfying L ajui~ f. This problem is
equivalent to the above one-sided L}-approximation problem. I

It is obvious that everyone-sided L '-approximation problem can be
considered as a semi-infinite optimization problem.

We now apply this relationship.

THEOREM 2.4. Let Problem II be given, PEP, and assume that int(K) is
connected. Then there is a function f E qK) such that Problem II has at
least two solutions.
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Proof Since pEP it follows from Proposition 2.3 that Problem II can
be considered as a one-sided L 1 -approximation problem. Then the theorem
follows from Theorem 5.13 in [8, p. 109]. I

Remark. Further theorems of this type can be obtained using results in
[8, p. 110]. Theorem 2.4 is a negative result. Therefore we study what can
be said about the dimension of the set of solutions.

In the following the set of solutions of Problem II for fixed p and f (and
of course fixed U) is denoted by E(p, f).

DEFINITION 2.5. Let Problem II be given and let pEP. Then the set of
solutions E(p, f) is said to have dimension k (0 ~ k ~ n - 1) if there exist
k + 1 vectors aD, ... , ak in E(p, f) such that aD - ai, ..., aD - ak are linearly
independent and k is maximal with respect to this property.

Let the vectors aD, ..., ak in [Rn, aJ = (a{, ..., a~), be given and let U =
span{ul' ..., un} be in C(K). Then we define

Z(a
O
, ..., a

k
, U) =)00 Z Ctl a{u}

We shall need the following condition.

DEFINITION 2.6. Let U = span {Ul> ... , Un}, n ~ 2, be a subspace of C(K)
which contains a strictly positive function. U is said to satisfy Property D k

,

o~ k ~ n - 1, if for linearly independent vectors aD, ... , ak there exists a
v E U\ {O} satisfying

Z(aO, ..., ak, U) ~ Z(v),

v(x) ~ 0, XEK.

Remark. In the theory of best L)-approximation, subspaces satisfying
Property A, B, or C (see [8, 10, 14, 15]) have been introduced. These are
conditions ensuring uniqueness for certain L 1 -approximation problems.
The definition of subspaces satisfying Property Dk is in the same spirit.
Later we shall also consider subspaces satisfying Property B (or B k

).

Now we are in position to give the main results of this section. We first
consider the case of continuous functions.

THEOREM 2.7. Let Problem II be given. Then dim E(p, f) ~ k for all
pEP and all f E C(K) if and only if U satisfies Property Dk, 0 ~ k ~ n - 1.

64075,2-7
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Proof Let us first assume that there exist k + 1 vectors aO, ..., ak,
a J = (a:, ... , a~) which are linearly independent and Z(ao, ..., ak

, U) ~ Z(v),
v(x) ~ 0 for all x E K, v E U, implies that v == O.

We set

H = {a = (a), ..., an) : it, aiui(x) ~°for all x EZ(ao, ..., a k
)}.

Then it can be shown as in [8, p. 120] that there is aWE C(K), W > 0,
satisfying

LCtl aiUj(X») w(x) dx ~°
for all a = (aI' ... , an) in H. Set Pi = -JK uiw; then it follows from Lemma 1.4
that there exist points XI, ...,X, in Z(aO, ...,ak

, U), t ~r~n, and ),\>0, ... ,
A, > °such that

We now define

i= 1, ..., n.

n

vj = L afu;,
i= ]

j=O, ... , k.

Then F = ':£J= ° IvJ I satisfies FE C(K), F ~ 0, and

F(xJ ) =0,

F(x) ~ !Vj(X)!,

j= 1, ..., r,

j=o, ..., k.

Suppose that VE U satisfies v(x)~F(x), XEK. Then v(x;)~O, i= 1, ... , r,
and therefore

Since vj(x) = °for all x E Z(aO, ..., ak, U) we have that

f vj(x) w(x) dx = 0,
K

j=o, ...,k.

If in Problem II we setf=Fand P=(PI, ...,Pn), wherepi=-JKuiw,
i = t, ..., n, then 0, aO, ..., ak are solutions. This contradicts the fact that
dim E(p, f) ~ k. To prove the converse we assume that there exist pEP
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and f E C(K) such that dim E(p, f) ~ k + l. Hence there exist vectors
aD, ..., ak+ 1 in E(p, f) such that b i = ai

- aD, i = I, ..., k + I, are linearly
independent. Let us define vj = :L7~ 1 a1 uj ' aj = (a:, ..., a~), for j = 0, ..., k + l.

Let F=f-(1/(k+2» :L7:01 vj =(1/(k+2» "L,7:01 (f-v). Since f
vj ~ 0 it follows that F(x) ~ 0 for some X E K implies thatf(x) = vo(x) =
... =Vk+I(X). Hence Z(F)cZ(b l

, ... , bk + l
, U). Moreover, OEE(p, F).

Since U is a D k-space there exists a v = :L7~ I C, U, E U\ {O} satisfying

Z(b l
, ... , bk + l

, U)cZ(v),

v(x)~O, XEK.

It follows from Proposition 2.2 that there is aWE C(K), w > 0, on K such
that JKu,(x)w(x)dx= -Pi' i=I, ...,n. Therefore

P(C)=,t C,Pi= -,tl (c'L Ui(x) w(x) dX) = -L v(x)w(x)dx<O.

Since U contains a strictly positive function we can construct a function
u=:L7~1 diu, such that u(x)~F(x), xEK, and

i djp,= - f dif uj(x)w(x)dx= -f u(x)w(x)dx<O.
'~I ,= 1 K K

This is a contradiction to the fact that 0 E E(p, F). I
We obtain another property of these subspaces.

THEOREM 2.8. Suppose that the subspace U = span {u 1 , ... , Un} in C(K)
satisfies Property D k, 0 ~ k ~ n - I. Then there does not exist an integration
rule Q(f)=L7'~laJ(xi)' ajEIR, x,EK for i=I, ...,m, which satisfies
Q(u) = fKu(x) w(x) dx for all u E U and m ~ n - k - l.

Proof Let there be given any n - k - 1 distinct points t I' ... , t" _ k _ 1 in
K. Then there are k + 1 linearly independent functions vj ="L,7= I af U j ,

j=l, ...,k+l, such that vj(t,)=O, i=I, ...,n-k-l and j=l, ...,k+l.
H {} n- k - I Z( I k + 1 U) j - ( j j) S· U' Dkence t, 1 C a, ..., a , , a - ai' ... , an' Ince IS a -space
there exist aVE U\{O} such that v(t,)=O, i= 1, ..., n-k-l, and v(x)~O,

x E K. Then it follows for every integration rule with the knots {t i } 7~ t - I

that Q(V)="L,7~lk-la,v(t,)=O.On the other hand, SKv(x)w(x)dx>O.
Hence the rule Q is not exact for all U E U. I

We now consider a simple example.

PROPOSITION 2.9. Let U be an n-dimensional subspace of C[a, b], n ~ 2.
Suppose that U is a Haar space (i.e., every u E U\ {O} has at most n - 1
distinct zeros). Then U satisfies Property D[n/2) but not Property D[n/2] - I.
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Proof Assume that U satisfies Property D [n/2] - I. Then it follows from
Theorem 2.8 that there is no quadrature formula which is exact for all u E U
and has at most n-([nI2]-I)-I=n-[nI2J knots. This is a contra
diction since Gaussian quadrature formulae have exactly n - [nI2] knots.

We now prove that U satisfies Property Dr
ll

/
2

]. Assume that VI' ... , Vrn/2] + I

are linearly independent functions in U. Since U is a Haar space the set
{x: vj(x) = 0, i = 1, ..., [n12J + I} contains at most h = n - [n12J - I points
{t i } 1~ I (i.e., d ~ h). It follows from well-known results on Haar spaces (see
[3, p. 28J) that there is an hE U\ {O}, h ~ 0, satisfying h(tJ =0, i= 1, ..., d.
Hence U satisfies Property D[II/2]. I

Theorem 2.4 and Proposition 2.9 are negative results concerning unique
ness of the solutions. But the situation completely differs if we consider
differentiable functions. In addition, we now consider problems which have
a unique solution not only for all f E C L(K) but also for all pEP. To this
end, we define the following condition.

DEFINITION 2.10. Let K be a compact convex subset of [Rd with piecewise
smooth boundary. Suppose that U is an n-dimensional subspace of C1(K)
which contains a strictly positive function. Then U is said to satisfy
Property B if to each u E U, u =f- 0, there exists a v E U, v =f- 0, for which

v~O.

We obtain the following characterization theorem.

THEOREM 2.11. Let Problem II be given, n ~ 2. Suppose that K and
U satisfy the conditions in Definition 2.10. Then there exists a unique
solution of Problem II for all f E C1(K) and all pEP if and only if U
satisfies Property B.

Proof It follows from Proposition 2.3 that Problem II is equivalent to
a one-sided L I -approximation problem. Then the theorem follows from
Theorems 5.19 and 5.22 in [8]. I

Subspaces satisfying Property B have been considered in one-sided
L I-approximation in detail. We give some examples.

EXAMPLES. ( I) Let U be an n-dimensional Haar space in C I [a, bJ and
for every UE U, u=f-O, we have I(ZI(u))~n-l, where I(A) counts the
number of points in A under the convention that points in A 1'\ (a, b) are
counted twice and points in A 1'\ {a, b} once. Then U satisfies Property B.
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(2) Polynomial splines with simple fixed knots. Let an interval [a, b]
and the knots a = Xo< XI < ... < Xr < Xr + 1 = b be given. Consider the
space Srn _ l,r [a, b], m?: 3, of functions s which on each of the intervals
[Xi_I' X;], i=I, ...,r+l, are polynomials of degree at most m-l and
such that s E c(rn - 2)[a, b]. This means that we have differentiable
functions. Then Srn_l.r[a, b] satisfies Property B.

Proofs and further examples can be found in [8, p. 121]. See also [12].
It should be mentioned that only a few examples of subspaces satisfying

Property B are known if K c !R d
, d> 1.

We can also give a characterization of the dimension of the solution set
for differentiable functions.

Let K be a compact convex subset of!R d with piecewise smooth boundary.
For any set of vectors aO, ..., ak in !Rn and given U = span{u" ..., un} in
C 1(K) we define

DEFINITION 2.12. Let U=span{u l , ..., un} be a subspace of C1(K)
which contains a strictly positive function. U is said to satisfy Property Bk

,

o~ k ~ n - 1, if for any linearly independent vectors aO, ..., ak there exists a
v E U\ {O} satisfying

v(X)?: 0, XEK.

THEOREM 2.13. Let Problem II be given, PEP, and K be a compact
convex subset of IR d with piece....'ise smooth boundary. Then dim E(p, f) ~ k
for all pEP and fcC I (K) if and only if U satisfies Property B k (0 ~ k ~
n - I).

Proof The theorem follows from Proposition 2.3 and Theorem 1.4
in [13]. I

In [13] there are also given examples of subspaces which satisfy
Property Bk including classes of Haar spaces defined on disjoint intervals,
spaces of lacunary polynomials, and certain spaces of bivariate polynomials.

Remarks 2.14. The results in [5] can also be used-together with
Proposition 2.3-to obtain theorems on strong uniqueness of order}' ()' ?: 1)
for the solutions in semi-infinite optimization.

Remark 2.15. The above given theory has been shown for the case
m = I. But we were not able to extend the results to the case m > I. The
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following example of linear best Chebyshev approximation with constraints
shows that the case m> I is very complicated.

PROBLEM III. Let K he a compact convex set in [Rd with piecewise
smooth boundary. Assume that f E C(K) and U is an n-dimensional subspace
ofC(K), n~2. Let {v(, ... ,v:.},j=I, ...,r,r~O, and {h" ...,h,} be sets of
functions in C' (K) where s = 0 or s = I. Suppose that

Q = Q(h" ..., h,) = {bE [R/I:f biv:(x) ~ hj(x), XE K, j= I, ..., r}
1= J

and int( Q) is nonempty. Determine a hest approximation u* = L;'~ I b,* u;
in U, b* = (h~, ..., h,~), in Q satisfving

II f- u* II J ~ II f - uil I

for all u = L;'~ I biu;, b= (h')7 in Q, and II f III = maxH K If(x)l·

This is equivalent to the following optimization problem.

PROBLEM III'. Let the assumptions of Prohlem III he given. Minimize
p(a) = c, a = (hi' ... , h/l' c), suhject to the constraints

(a) a L h;u;(x) - c ~ al(x),
i= I

aE{-I,l}

(b) L h;v:(x)~h/(x),
j= 1

j= I, ... , r

for all x E K.

This is a semi-infinite optimization problem which has the form of
Problem I. We have p=(O, ... ,O, 1) and a=(h" ...,h/l'c) in W+ 1

• Since
int(Q)#0 there exists an a=(b" ...,bn,c) such that (a)-(b) in Problem
III' satisfy the Slater condition. It follows immediately from Problem III
that there exists a best approximation and that the solution set is bounded.
Hence this is also true for Problem III' and therefore pEP.

Remark 2.16. Characterizations of best approximations and a Haar type
theory of Problem III have already been given in [4]. We can also obtain
these results if we apply Theorem 1.3 and Corollary 1.6 to Problem III'.

If r = 0 in Problem III then we have no constraints. The well-known
Haar theory characterizes unicity. In particular, we have uniqueness for
U EC(K) and all f E C(K) if U satisfies the Haar condition. In contrary to
the case of Problem I with m = 1 we also have positive results in this
problem if we use continuous functions.
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If r~ I in Problem III then requiring uniqueness for continuous
functions {v{} and {hj } is too restrictive. On the other hand it is shown in
[4] that the variety of subspaces providing positive results is much wider
if {vn and {hj } are smooth functions.
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